The Kingdom of Saudi Arabia stands as a global leader in water desalination, transforming seawater into the lifeblood sustaining one of the world's most water-scarce nations. According to comprehensive market research by P&S Intelligence, the Saudi Arabian water desalination plant equipment market was valued at USD 6,377.5 million in 2024 and is projected to reach USD 13,719.1 million by 2032, expanding at a robust compound annual growth rate (CAGR) of 10.2% during the 2025-2032 forecast period. This remarkable growth trajectory reflects Saudi Arabia's unwavering commitment to water security as a strategic national priority, massive infrastructure investments aligned with Vision 2030 economic transformation objectives, and the kingdom's position as the world's largest producer of desalinated water, accounting for approximately one-fifth of global desalination capacity.
Water Scarcity: The Defining Challenge of the Arabian Peninsula
Saudi Arabia confronts one of the planet's most severe water scarcity challenges, receiving minimal annual rainfall averaging less than 100 millimeters across most of the kingdom while facing scorching temperatures and extreme evaporation rates that compound water stress. Renewable freshwater resources remain virtually non-existent relative to population needs, with groundwater aquifers—accumulated over millennia—depleting rapidly under decades of intensive agricultural and municipal consumption. This fundamental geographic and climatic reality has driven Saudi Arabia to become the world's desalination pioneer and largest operator, with desalinated seawater now providing approximately 50% of the kingdom's drinking water needs and an even higher percentage in major urban centers along the Red Sea and Arabian Gulf coastlines.
The water desalination plant equipment market encompasses the comprehensive range of technologies, systems, and components essential for converting seawater into potable water suitable for human consumption, industrial processes, and increasingly for agricultural applications. Major equipment categories include reverse osmosis membranes and pressure vessels, multi-stage flash distillation systems, multi-effect distillation units, intake and pretreatment systems, high-pressure pumps, energy recovery devices, post-treatment equipment, and sophisticated control and monitoring systems ensuring optimal performance, efficiency, and water quality compliance with stringent Saudi standards.
Strategic Drivers Propelling Market Expansion
Population growth and urbanization constitute the primary demand drivers for desalination capacity expansion. Saudi Arabia's population has grown from approximately 16 million in 1990 to over 35 million currently, with projections suggesting continued growth toward 40 million or beyond by 2032. This demographic expansion concentrates overwhelmingly in urban areas, particularly the mega-cities of Riyadh, Jeddah, and Dammam, where water demand intensity far exceeds what natural sources could ever sustainably supply. Each additional resident requires water for drinking, cooking, sanitation, and daily activities, translating directly into desalination capacity requirements measured in millions of cubic meters daily.
Vision 2030, Saudi Arabia's comprehensive economic transformation blueprint, fundamentally shapes water sector development. The initiative's emphasis on economic diversification beyond hydrocarbon dependence drives industrial development requiring substantial water supplies for manufacturing, petrochemicals, mining, and other sectors. Simultaneously, Vision 2030's tourism expansion ambitions—targeting 100 million annual visitors by 2030 through mega-projects including NEOM, the Red Sea Project, and Qiddiya—create extraordinary water demand in coastal regions where desalination represents the only viable supply source. These massive developments necessitate not only capacity expansion but also cutting-edge desalination technologies delivering superior efficiency and sustainability.
Replacement and modernization of aging desalination infrastructure represents a substantial market component often overlooked in capacity expansion narratives. Saudi Arabia's desalination industry dates to the 1970s, with many facilities now operating beyond their originally designed lifespans. These older plants predominantly employ thermal desalination technologies—multi-stage flash (MSF) and multi-effect distillation (MED)—which, while reliable, consume significantly more energy than modern reverse osmosis (RO) systems. The kingdom pursues comprehensive modernization programs replacing or retrofitting aging facilities with energy-efficient technologies reducing operational costs and environmental footprints while improving water quality and reliability.
Energy efficiency imperatives increasingly influence desalination technology selection and equipment procurement decisions. Traditional thermal desalination processes consume enormous energy quantities, historically supplied through subsidized fossil fuels creating fiscal burden and carbon emissions concerns. Modern reverse osmosis technologies coupled with energy recovery devices reduce specific energy consumption by 50-70% compared to thermal processes, delivering both economic and environmental benefits. Saudi Arabia's commitment to renewable energy development—targeting 50% renewable electricity generation by 2030—creates opportunities for solar-powered desalination facilities further reducing operating costs and carbon intensity.
Technological Landscape and Innovation Trends
Reverse osmosis technology dominates new capacity additions and represents the fastest-growing segment within Saudi Arabia's desalination equipment market. RO systems force seawater through semi-permeable membranes under high pressure, separating dissolved salts and impurities from water molecules. Technological advances in membrane chemistry, manufacturing precision, and system design have dramatically improved RO performance, reducing energy consumption, extending membrane lifespan, and enhancing salt rejection rates. Modern RO facilities in Saudi Arabia incorporate sophisticated pretreatment systems preventing membrane fouling, energy recovery devices capturing pressure energy from brine discharge, and multi-stage configurations optimizing efficiency across varying feedwater conditions.
Hybrid desalination systems combining multiple technologies represent an important innovation trend addressing specific operational challenges. Hybrid configurations might integrate RO with thermal processes, leveraging each technology's strengths while mitigating weaknesses. For example, thermal processes handle challenging feedwater with high temperatures or unusual chemistry where membranes struggle, while RO provides efficient baseload production. Other hybrid approaches combine desalination with power generation in cogeneration facilities where waste heat from electricity production powers thermal desalination processes, achieving overall system efficiencies unattainable through standalone configurations.
Renewable energy integration transforms desalination economics and sustainability profiles. Solar-powered desalination facilities eliminate fuel costs while dramatically reducing carbon footprints, aligning with Saudi Arabia's environmental objectives and potentially qualifying for carbon credits or green financing. Photovoltaic systems powering RO plants prove particularly viable given Saudi Arabia's exceptional solar resources and declining solar equipment costs. Concentrated solar thermal technologies can power thermal desalination processes or hybrid systems. Battery storage addresses solar intermittency, ensuring continuous desalination operation or alternatively allowing facilities to operate during peak solar production periods, storing water rather than electricity for distribution when solar generation ceases.
Digitalization and smart technologies revolutionize desalination plant operations through advanced sensors, real-time monitoring, predictive maintenance algorithms, and artificial intelligence optimization. Modern facilities deploy thousands of sensors tracking parameters including flow rates, pressures, temperatures, water quality indicators, and equipment vibration signatures. Machine learning algorithms analyze this data identifying efficiency optimization opportunities, predicting equipment failures before they occur, and automatically adjusting operations responding to changing conditions. These digital capabilities reduce downtime, extend equipment lifespans, minimize energy consumption, and ensure consistent water quality—all critical factors influencing total cost of ownership over facilities' multi-decade operational horizons.
Major Equipment Categories and Market Segments
Membranes and membrane-related equipment constitute the largest and fastest-growing equipment category within reverse osmosis systems. Spiral-wound membranes dominate seawater applications, with leading manufacturers including DuPont, Toray, Hydranautics, and LG Chem continuously advancing membrane performance through proprietary polymer chemistries and manufacturing innovations. Pressure vessels housing membrane elements represent substantial equipment value, requiring corrosion-resistant materials and precise engineering withstanding extreme pressures over decades. Membrane performance directly determines plant efficiency, operating costs, and water quality, making membrane selection among the most critical decisions in RO facility design.
High-pressure pumps and energy recovery devices represent another major equipment category essential for RO operations. Feed pumps must deliver seawater at pressures typically ranging from 55 to 70 bar (800-1,000 psi) for seawater RO applications—energy-intensive operation accounting for the majority of RO power consumption. Energy recovery devices including pressure exchangers, Pelton turbines, and turbochargers capture pressure energy from brine discharge streams, reducing net energy requirements by 30-40% compared to systems lacking recovery capabilities. Manufacturers including Danfoss, Energy Recovery Inc., and Flowserve provide increasingly efficient energy recovery technologies representing substantial value within overall plant investments.
Intake and pretreatment systems ensure feedwater quality protects downstream equipment particularly sensitive RO membranes susceptible to fouling and scaling. Intake systems ranging from open seawater intakes to beach wells and subsurface intake galleries must prevent debris, marine organisms, and excessive suspended solids from entering treatment processes. Pretreatment typically includes screening, coagulation, flocculation, sedimentation, and filtration removing particles, organic matter, and biological contaminants that would otherwise foul membranes or reduce performance. Advanced pretreatment technologies including ultrafiltration and dissolved air flotation increasingly replace conventional media filtration, delivering superior feedwater quality enabling more efficient downstream RO operations.
Post-treatment and water quality management equipment ensures desalinated water meets stringent quality standards before distribution. RO permeate requires remineralization adding calcium, magnesium, and other minerals removed during desalination, adjusting pH to prevent distribution system corrosion, and disinfection eliminating any potential biological contamination. Storage facilities, pumping stations, and distribution networks represent substantial infrastructure investments beyond the desalination facility itself but intrinsically linked to overall system functionality. Sophisticated water quality monitoring equipment including online analyzers and laboratory instrumentation ensures continuous compliance with regulatory standards protecting public health.
Key Market Players and Competitive Dynamics
The Saudi Arabian desalination equipment market features a mix of international technology leaders, regional engineering contractors, and increasingly capable domestic manufacturers developing indigenous capabilities aligned with Vision 2030's localization objectives. Global equipment manufacturers including Veolia, Suez, Acciona Agua, Doosan Heavy Industries, and Fisia Italimpianti maintain significant presence, providing advanced technologies, comprehensive engineering capabilities, and proven track records across mega-scale projects. These international players typically partner with Saudi entities through joint ventures, technology transfer agreements, or subcontracting arrangements navigating local content requirements and building domestic capabilities.
Saudi Arabia's Saline Water Conversion Corporation (SWCC), wholly owned by the Saudi government, represents the world's largest desalination operation and consequently the kingdom's dominant water sector entity. SWCC operates over 30 desalination facilities with combined production capacity exceeding 5 million cubic meters daily, accounting for the majority of Saudi desalinated water production. As primary customer for desalination equipment through new project development and ongoing maintenance requirements, SWCC's technology preferences, procurement practices, and strategic direction fundamentally shape market dynamics. Recent years have seen SWCC emphasize energy efficiency, renewable energy integration, and private sector participation through public-private partnerships.
Private developers increasingly participate in Saudi desalination sector development through independent water and power projects (IWPP) and independent water projects (IWP) where private consortia finance, construct, own, and operate facilities under long-term water purchase agreements with government offtakers. This model attracts international investment and expertise while transferring construction and operational risks to private sector. Major private sector projects include the Jubail 3 Independent Water Project—one of the world's largest RO facilities with 600,000 cubic meters daily capacity—and the Yanbu 4 IWP, both representing billions of dollars in investment and substantial equipment procurement opportunities for manufacturers and contractors.
Localization initiatives under Vision 2030 drive domestic manufacturing development and local content requirements in equipment procurement. The Saudi government established organizations including the National Industrial Development and Logistics Program (NIDLP) promoting indigenous manufacturing capabilities across strategic sectors including water technologies. International equipment manufacturers increasingly establish Saudi manufacturing presence, technology transfer arrangements, and local partnerships satisfying domestic content requirements while accessing the substantial Saudi market and potentially positioning for broader Middle Eastern and African market penetration from Saudi production bases.
Economic Considerations and Project Financing
Desalination represents capital-intensive infrastructure requiring substantial upfront investment but delivering essential services over multi-decade operational lifespans. Typical seawater RO facilities require capital investments ranging from USD 1,000 to USD 2,000 per cubic meter of daily capacity depending on location, feedwater characteristics, environmental requirements, and technology specifications. Large-scale facilities benefit from economies of scale reducing per-unit costs, though even mega-projects represent billion-dollar investments requiring sophisticated project financing structures and long-term revenue certainty.
Total cost of water encompasses capital costs, operating expenses including energy and chemicals, maintenance requirements, and eventual decommissioning or replacement. Energy costs historically dominated operating expenses for thermal desalination but decline significantly with modern RO technologies and renewable energy integration. Membrane replacement represents substantial periodic expense for RO facilities, with membrane lifespan typically ranging from 5 to 10 years depending on feedwater quality, operating conditions, and maintenance practices. Comprehensive lifecycle cost analysis proves essential for technology selection and design optimization, as lowest capital cost rarely translates to lowest total cost over project lifetimes.
Public-private partnerships increasingly provide financing mechanisms for desalination projects, leveraging private capital and operational expertise while maintaining public sector ownership or control. These structures typically involve private consortia financing and constructing facilities under build-own-operate-transfer (BOOT) or similar arrangements, recovering investments through long-term water purchase agreements at predetermined tariffs. International financial institutions, export credit agencies, and commercial banks provide project financing supported by government guarantees or offtake agreements. This financing approach accelerates infrastructure development without fully burdening government budgets while introducing private sector efficiency and innovation incentives.
Water pricing and subsidy policies significantly influence sector economics and investment decisions. Historically, Saudi Arabia provided heavily subsidized water to consumers, with tariffs covering only a fraction of production costs. Recent reforms have increased residential and commercial water tariffs toward cost-recovery levels, improving sector financial sustainability while encouraging conservation. Industrial and agricultural users increasingly face commercial tariff structures reflecting full production costs. These pricing reforms improve desalination project economics and creditworthiness, facilitating private investment while promoting more efficient water utilization across the economy.
Environmental Considerations and Sustainability Imperatives
Desalination's environmental impacts receive increasing scrutiny globally and within Saudi Arabia as sustainability becomes central to development planning. Primary environmental concerns include energy consumption and associated carbon emissions, brine discharge impacts on marine ecosystems, chemical usage in treatment processes, and marine organism impingement and entrainment during intake operations. Saudi Arabia's desalination industry pursues multiple strategies addressing these environmental challenges through technology selection, operational practices, and regulatory frameworks balancing water security imperatives with environmental protection.
Energy consumption and carbon footprint reduction represent priorities given desalination's energy intensity and Saudi Arabia's climate commitments. Transitioning from thermal to RO technologies reduces specific energy consumption dramatically, with modern RO facilities requiring 3-4 kilowatt-hours per cubic meter compared to 10-15 kWh/m³ for thermal processes. Renewable energy integration further reduces carbon intensity, with solar-powered facilities achieving near-zero emissions operation. Cogeneration approaches utilizing waste heat from power generation or industrial processes improve overall system efficiency. Saudi Arabia's renewable energy expansion and desalination modernization collectively target substantial carbon emissions reductions aligned with national climate objectives and international commitments.
Brine discharge management addresses marine ecosystem impacts from highly concentrated salt solutions returned to source waters. Conventional discharge practices releasing brine through coastal outfalls can create localized hypersalinity affecting marine life. Modern facilities employ diffuser systems distributing brine over wider areas, reducing localized concentration spikes. Alternative brine management approaches including deep well injection, evaporation ponds, or resource recovery extracting valuable minerals from brine represent emerging strategies potentially eliminating discharge entirely. Comprehensive environmental impact assessments now standard for Saudi desalination projects ensure discharge practices meet regulatory requirements and minimize ecological disturbance.
Intake system design and operation address concerns regarding marine organism impingement (trapped against intake screens) and entrainment (drawn into facility and killed during processing). Conventional open intake structures drawing large volumes of seawater inevitably capture marine life including fish, larvae, and plankton. Intake velocity reduction, screening technologies, and alternative intake designs including beach wells or subsurface galleries significantly minimize biological impacts. Saudi regulations increasingly require environmental impact assessments and biological monitoring ensuring intake systems employ best available technologies protecting marine ecosystems while meeting facility water supply requirements.
Regulatory Framework and Standards
Saudi Arabia maintains comprehensive regulatory frameworks governing desalination facility design, construction, operation, and water quality. The Ministry of Environment, Water and Agriculture (MEWA) provides overarching policy direction and regulatory oversight, while the Saline Water Conversion Corporation establishes technical standards and specifications for government-owned facilities. The Saudi Standards, Metrology and Quality Organization (SASO) develops and enforces product standards including those applicable to desalination equipment. This multi-layered regulatory environment ensures facilities meet safety, performance, environmental protection, and water quality objectives while providing clarity for investors and equipment suppliers regarding compliance requirements.
Water quality standards for desalinated water align with international best practices including WHO guidelines while addressing specific regional considerations. Parameters including total dissolved solids, hardness, pH, disinfection by-product limits, and microbiological quality must meet stringent specifications protecting public health. Modern desalination facilities incorporate sophisticated monitoring and control systems ensuring continuous compliance with these standards. The increasing emphasis on water quality reflects consumer expectations, public health imperatives, and recognition that high-quality water reduces distribution system maintenance requirements and improves overall system sustainability.
Environmental regulations governing desalination operations have strengthened significantly in recent years, reflecting Saudi Arabia's growing environmental consciousness and alignment with international best practices. Environmental impact assessments are now mandatory for new facilities, examining potential effects on marine ecosystems, air quality, and coastal environments. Discharge permits specify brine salinity limits, temperature restrictions, and chemical concentration requirements protecting receiving waters. Intake system designs must demonstrate minimal biological impacts. These environmental regulations sometimes increase project costs but ensure development proceeds sustainably, protecting environmental assets supporting tourism, fisheries, and overall quality of life.
Future Outlook: Innovation and Strategic Directions
The Saudi Arabian water desalination plant equipment market's trajectory toward USD 13,719.1 million by 2032 reflects the kingdom's unwavering commitment to water security as a fundamental prerequisite for economic development, population wellbeing, and strategic autonomy. Several key trends will shape market evolution throughout the forecast period. Technology will continue advancing, with next-generation membranes, more efficient energy recovery devices, and improved pretreatment systems reducing costs and environmental impacts. Renewable energy integration will accelerate dramatically as solar costs decline and storage technologies improve, potentially achieving majority renewable-powered desalination within the forecast period.
Decentralized and modular desalination systems represent an emerging trend complementing large-scale centralized facilities. Smaller systems serving specific industrial facilities, remote communities, or individual developments offer flexibility and resilience advantages while avoiding extensive transmission infrastructure. Containerized and standardized modular units enable rapid deployment and incremental capacity expansion matching demand growth. This architectural diversification creates market opportunities for equipment suppliers offering scalable solutions beyond mega-project focus characterizing historical market development.
Water reuse and circular economy principles increasingly complement desalination as Saudi Arabia pursues comprehensive water security strategies. Treating municipal wastewater to high standards enables reuse for industrial cooling, landscape irrigation, agricultural applications, and potentially even indirect potable reuse augmenting drinking water supplies. While distinct from desalination, water reuse infrastructure requires many similar equipment categories including membranes, pumps, treatment systems, and monitoring equipment. Equipment suppliers with capabilities spanning both desalination and advanced water treatment position themselves to capture broader market opportunities as Saudi water strategies encompass the full spectrum of conventional, desalinated, and reused water sources.
Research and development investments will intensify as Saudi Arabia pursues technological leadership in desalination aligned with Vision 2030 knowledge economy objectives. The establishment of research centers, academic programs, and public-private research collaborations aims to position Saudi Arabia as an innovation hub rather than merely a technology consumer. Focus areas include next-generation membranes, renewable energy integration optimization, brine management solutions, and digital technologies enhancing operational efficiency. This innovation emphasis creates opportunities for technology developers, research institutions, and equipment manufacturers participating in Saudi Arabia's journey toward desalination technology leadership.
The Saudi Arabian water desalination plant equipment market's robust 10.2% CAGR through 2032 reflects both the kingdom's absolute water security requirements and its strategic vision for sustainable, efficient, and technologically advanced infrastructure. As climate change intensifies regional water stress, populations grow, and economic diversification proceeds, desalination will remain indispensable to Saudi Arabia's future. Equipment suppliers, technology developers, and service providers demonstrating innovation, sustainability, and alignment with Saudi strategic objectives will find exceptional opportunities within this dynamic and essential market.
Explore comprehensive insights on the Saudi Arabian water desalination plant equipment market: https://www.psmarketresearch.com/market-analysis/saudi-arabia-water-desalination-plant-equipment-market-report
Frequently Asked Questions (FAQs)
1. Why is Saudi Arabia the world's largest desalination market?
Saudi Arabia faces extreme water scarcity with minimal rainfall, virtually no renewable freshwater resources, and depleting aquifers, while supporting a population exceeding 35 million concentrated in urban areas. This fundamental mismatch between natural water availability and human needs makes desalination not merely an option but an absolute necessity. The kingdom produces approximately 20% of global desalinated water, with desalination providing roughly 50% of drinking water needs and higher percentages in coastal cities.
2. What technologies dominate Saudi Arabia's desalination infrastructure?
Historically, thermal desalination technologies including multi-stage flash (MSF) and multi-effect distillation (MED) dominated due to abundant cheap energy and proven reliability. However, reverse osmosis (RO) now dominates new capacity additions due to superior energy efficiency, lower operating costs, and smaller physical footprints. The kingdom pursues comprehensive modernization programs transitioning from thermal to RO technologies, though thermal plants remain significant in the current capacity mix and continue operating in facilities where cogeneration with power generation provides economic advantages.
3. How does Vision 2030 impact the desalination equipment market?
Vision 2030 fundamentally shapes market development through multiple pathways including economic diversification driving industrial water demand, tourism mega-projects creating extraordinary coastal water requirements, renewable energy targets enabling solar-powered desalination, and localization initiatives promoting domestic manufacturing capabilities. The initiative's emphasis on sustainability, efficiency, and technological advancement drives adoption of cutting-edge desalination technologies and comprehensive sector modernization beyond simple capacity expansion.
4. What role do public-private partnerships play in market development?
Public-private partnerships increasingly provide the primary development model for new desalination capacity through independent water projects where private consortia finance, construct, own, and operate facilities under long-term water purchase agreements. This approach leverages private capital and expertise, accelerates infrastructure development without fully burdening government budgets, and introduces efficiency incentives while maintaining government control through offtake agreements. Recent mega-projects including Jubail 3 and Yanbu 4 exemplify this model, representing billions in private investment and substantial equipment procurement opportunities.
5. How significant is energy consumption in desalination economics?
Energy historically represented the largest operational expense for thermal desalination, consuming 10-15 kWh per cubic meter produced. Modern RO facilities reduce this to 3-4 kWh/m³, dramatically lowering operating costs and carbon footprints. Renewable energy integration further transforms economics by eliminating fuel costs and reducing emissions. Energy efficiency improvements through advanced membranes, energy recovery devices, and process optimization continue reducing consumption, making desalination increasingly economically viable and environmentally sustainable.
6. What environmental challenges does desalination face?
Primary environmental concerns include energy consumption and carbon emissions, brine discharge creating localized hypersalinity potentially harming marine ecosystems, chemical usage in treatment processes, and marine organism impingement and entrainment during intake operations. Saudi Arabia addresses these through technological solutions including energy-efficient RO systems, renewable energy integration, improved brine discharge diffusion, alternative intake designs, and comprehensive environmental impact assessments ensuring projects balance water security with environmental protection.
7. How does the Saudi market compare with global desalination trends?
Saudi Arabia leads global desalination in absolute capacity and technological sophistication while reflecting broader industry trends toward RO technology dominance, renewable energy integration, and enhanced environmental performance. However, the kingdom's scale, government resources, and strategic water security imperatives enable investments and technological adoption potentially ahead of global averages. Saudi projects often represent world-leading scale and incorporate cutting-edge technologies, positioning the kingdom as both major market and innovation testbed for desalination advancement globally.
8. What equipment categories represent the largest market opportunities?
RO membranes and membrane-related equipment constitute the fastest-growing category as RO dominates new capacity. High-pressure pumps and energy recovery devices represent substantial value given their critical role in RO efficiency. Intake and pretreatment systems require significant investment ensuring feedwater quality protects downstream equipment. Post-treatment and water quality management equipment ensures regulatory compliance. Additionally, digitalization and control systems represent growing investment as facilities pursue operational optimization through advanced monitoring and artificial intelligence.
9. How do localization requirements affect international equipment suppliers?
Vision 2030's localization objectives create both challenges and opportunities for international suppliers. Companies increasingly establish Saudi manufacturing presence, technology transfer arrangements, or local partnerships satisfying domestic content requirements while accessing the substantial market. Rather than barriers, many suppliers view localization as strategic opportunity positioning for broader regional market access while contributing to Saudi economic development. Successful approaches balance meeting localization requirements with maintaining quality standards and technological advantages differentiating premium equipment suppliers.
10. What future innovations will shape the market?
Next-generation membranes with improved permeability and fouling resistance will reduce energy consumption and operating costs. Advanced energy recovery achieving 95%+ efficiency will further minimize power requirements. Renewable energy integration will accelerate with improved solar-storage combinations enabling 100% renewable operation. Digitalization through AI-powered optimization will enhance efficiency and predictive maintenance. Emerging approaches including forward osmosis, membrane distillation, and resource recovery from brine represent longer-term innovations potentially transforming desalination economics and sustainability. Saudi Arabia's research investments position the kingdom to lead rather than follow these technological advances.